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Introduction

Upstream-differencing schemes attempt to discretize hyper-
bolic partial differential eguations by using differences biased
in the direction determined by the sign of the characteristic speed.
In recent years upstream differencing has become very popular,
and a multitude of new techniques of implementing directionally
biased differencing have been suggested. This popularity is primarily
due to the robustness of upstream-differencing schemes and tne
availability of a underlying physical model; other reasons are the
possibility of achieving high resolution of stationary discontinuities
and that of obtaining fast convergence to a steady state. Most of
these schemes are an extension of the Courant-Isaacson-Rees scheme
[ 3] to nonlinear conservation laws, and therefore a unified descrip-

tion may be given.

The present report concentrates on reviewing basic concepts
and deriving design principles; numerical experimentation is not
presented. The paper is built up as follows: Section 1 reviews
some properties of the eqgiations essential to their proper numerical
approximation. In Section 2 we discuss a straightforward extension
of linear upstream differencing to nonlinear systems. Section 3
introduces the physical picture due to Godunov, useful to interpret
certain schemes from Section 2 and to construct new schemes. Finally,
in Section 4 we comment on flux splitting, another form of upstream
differencing, and relate it to a class of schemes motivated by the

Boltzmann equation.



1. Weak Solutions and their Numerical Approximation

In this paper we consider numerical solutions of the initial-

value problem for hyperbolic systems of conservation laws

(1.1la) u, + f(u)X =0, u(x,0) =u

c X); = < x < o

0(
Here u(x,t) is a column vector of m unknowns and f(u), the flux, is

a vector-valued function of m components. We can write (l.la) in

matrix form

(1.1b) ut + AuX = 0, A(u) = fu

(1.1) is called hyperbolic if all eigenvalues of the Jacobian matrix
A are real. We assume that the eigenvalues al(u),...,am(u) are dis-
tinct and arranged in an increasing order.

To allow for discontinuous solutions we admit weak solutions which

satisfy (1L.1l) in the sense of distribution theory, i.e.,

[s o BNe] o

(1.2a) J I[wtu+wxf(u)]dxdt + Jw(x,O)u&x)dx = 0,

0 -« -0

for all C test functions w(x,t) that vanish for x| + t large.
Condition (l.2a) is equivalent to requiring that for all rectangles
(a,b)x(trtg)the relation obtained by integrating (l.la) over the

rectangle should hold:

t2 t

2
(1.2b) Ju(x,t2)dx - Ju(x,tl)dx + ff(u(b,t))dt - [f(u(a,t))dt = 0
a a tl tl

Clearly, a piecewise smooth weak solution of (1.1) satisfies
(1.1) point wise in each smooth region; across each curve of dis-

continuity the Rankine-Hugoniot relation




(1.3) flug) - £(up) = Slug=up)

holds, where S is the speed of propagation of the discontinuity,

and up and u, are the states on the left and the right, respectively.
Since weak solutions of (l.1l) are not uniguely determined by

their initial data we select physically relevant solutions,

defined as those solutions that are limits as € > 0 of solutions

u(e) of the viscous equations

(1.4) u, + f(u)X = EU, s e > 0.

In this paper we consider systems of conservation laws (l.1l) that

possess an entropy function U(u), defined as follows:

(i) U is a convex function of u, i.e., Uuu > 0,

(ii) U satisfies
(1.5a) uf =PF

where F is some other function called entropy flux; it follows

from (l.5a) that every smooth solution of (l1.1l) also satisfies

I'I. vy [ + F u\ — f\.
(1.5b) \u)t ( )% 0

Limit solutions of (1.4) satisfy, in the weak sense, the following
inequality:

(1.6a) U(u), + F(u)X < 0;

t

i.e., for all nonnegative smooth test functions w(x,t) Qf compact
support
[o oI ¢ o} (e o]

(1.6b) - J I(th+wXF)dxdt - jw(x,O)U@%ﬁx))dx < 0,
0 —-—

00 [o o]



Condition (l.6b) is equivalent to requiring that for all
rectangles (a,b)x(tl,tﬁthe inequality obtained by integrating

(1.6a) over the rectangle should hold:

) b t2
(L.6cC) JU(u(x,t?)dx - JU(U(Xftf)dX + JF(u(b,t))dt
a a tl
2
= JF(u(a,t))dt < 0.
tl

If u is piecewise smooth with discontinuities, then (1.5b)

holds pointwise in the smooth regions, while across a discontinuity
(1.64) F(uR) - F(uL) - S[U(uR) - U(uL)] < 0.

Relations (1.6) are called entropy conditions (see | 12]).

In the following we shall describe numerical approximations
to weak solutions of (1.1) which are cbtained by 3-point explicit

schemes in conservation form:

ntl _ n _ n n
(1.7a) vj = vj Afj+% + Afj_% , A= 1/h
where

n _ n n
(1.7b) fj+% = f(vj R Vj+l)'

Here v? = v(jA,nt) , and f(u,v) is a numerical flux. We require

the numerical flux to be consistent with the physical flux in the

following sense:

(1.7¢) f(u,u) = £(u)




We say that the difference scheme (1.7) is consistent

with the entropy condition (1.6a) if an inequality of the

following kind is satisfied.

n+1

n n
. . < U, = AF
(1.8a) Uy < Uy

j+1/2

n

* A1/

where the following abbreviations are used:

n+l n+l n n
.8b U = U(vi L= :
(1.8Db) i (v ) U U(vj)
n _ n _n .
(1.8C) Fj+l/2 - F(VjIVj+1) ’

here F(u,v) is a numerical entropy flux, consistent with

entropy flux:

(1.84) F(u,u) = F(u) .

The following is an easy (but useful) extension of an

easy (but useful) theorem of Lax and Wendroff [12]:

Theorem 1.1. Suppose the difference scheme (1.7) is
ccnsistent with the conservation law (l.la), and with the
entropy condition (l.6a). Let v? be a solution of (1.7),
with initial values vg = ¢(jA). Extend the lattice function

v? to continuous values of x,t by setting, as usual
(1.9) vix,t) = v? , 3= [x/A], n= [t/T] .

Suppose that for some sequence Ak ~ 0, /0 = A,

the 1limit



lim V(X,t) = U(X,t)

exists in the sense of bounded, Lioc convergence.

Then the limit u satisfies the weak form (1.2) of the
conservation law, and the weak form (l1.6b) of the
entropy condition.

The proof consists, just as in [12], of multiplying
(1.7a) by a test function, summing by parts over n and j,
writing the sum as an integral, and passing to the limit
Ak +~ 0.

Theorem 1.1 remains true, and its proof the same,

when the fluxes f and F are allowed to be functions of

22 arguments:

(1.10) £ = f(

j+1/2 Uy g1 Bgmga2r et 1 Byag)

and similarly for Fj+l/2‘
Assume that uo(x)is equal to some reference state u,

for |x| large:

(1.11a) uy(x) = u, for x| > M.
Then
(1.11b) v? = u, for A|j] > M + nd .

The entropy U may be altered by adding to it an arbitrary
inhomogeneous linear function; this follows from definition

(1.5a). Adding such a linear function to U will not alter




its convexity, but achieves the following:

(1.12) Ulae) =0, U (u) =0.
1

Since U is convex, it follows from (1.12) that U{u) > 0

for u # u, ; in fact if U is strictly convex,

(1.13) Uu) > clu-u*|? .

Now sum (1l.8a) with respect to j over all integers j; we
obtain
(1.14a) oottt < 1ol

j 3 T3
In other words: total entropy is a decreasing function of time.
In particular
(1.14b) Fo <1ul.

j 2 T3
This is an e priori inequality for solutions of the difference
scheme (1.7), analogous to the energy inequality for linear
symmetric hyperbolic differential and difference equations.
Since by (1.13) U is positive for u # u, , this is an a priori
estimate for solutions of the difference scheme (1.7),
and indicates that the scheme is stable. However (1.14b) is
not strong enough to prove the pointwise boundedness of

solutions of (1.7), nor the existence of convergent subsequences.



A word of caution: when dealing with equations of
mathematical physics, in particular the equations of
compressible flow, then we must make sure that the
difference scheme we are using keeps the variables within
their phvsical range, i.e. that density and pressure
are always positive quantities.

Theorem 1.1 holds in any number of space variables.
Furthermore multidimensional schemes that are composites
of one-dimensional fractional steps satisfy the multidimensional
analogue of the entropy condition (1.8a) if each individual
one-dimensional step satisfies an entropy inequality of

the form (1.8a)r see Crandall-Majda, [2].




2. Upstream-differencing Schemes

We start our review with the description of the first
order accurate Courant-Isaacson-Rees (CIR) scheme [1] for

the constant-coefficient scalar eguation

(2.1) uy + au, = 0, a = const.
vh - vl for a< o0
n+l n I+l J
(2.2a) vj = vj - Aa -
Ve - v for a > 0
J j-1
Introducing the notation
- . _1
a = min(a,0) = 5 (a - la]) ,
a¥t = max(a,0) = % (a + |al) .
we rewrite (2.2a) as
n+tl _ _n _ +,.n _ N -, n _ . n
(2.2b) vj vj [a (vj Vj—l) + a (vj+1 vj)] '
which can be rewritten as
n+tl _ _+ n _ n _ -.n
(2.2¢) vy o= avg gt A (L Ial)vj ha vy o

Under the Courant-Friedrichs-Lewy (CFL) condition

(2.2d) Aal <1

all coefficients of v? on the right in (2.2d) are positive.

Such a scheme is called monotone, and is stable in the

maximum norm; that is, for a monotone scheme

max |vp+l| < max R
. g
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Equation (2.2d) can be rewritten as

ntl _ n _ X n
(2.2f) vj = vj 5 a(vj+l

n

n n n
j_l) . —2V-+V.

-V J+1 Jj j-l)

A
+ 5 lal (v
This shows that solutions of (2.2) can be thought of

as approximating solutions of

(2.3) w, + aw, = % Axlal (1 - K]al)wxx

to second-order accuracy. We observe that the viscosity term
in (2.3) vanishes for a = 0 ; this fact later will allow
perfectly resolved stationary shocks but may also result in
admitting entropy violating discontinuities.

We describe now the extension of (2.2) to systems

of equations with constant coefficients:
(2.4) u, + AuX = 0 , A = constant.
Because of the hyperbolicity assumption, the system

(2.4) can be diagonalized by a similarity transformation

(2.5a) w =T Tu , rlar = A, A., = a; 8.

(2.5b) w, + wa =0 .

The components of w are called characteristic variables

and (2.5b) is a system of decoupled characteristic equations.
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We extend the CIR scheme to systems by applying the
scalar scheme (2.2) to each of the decoupled scalar
characteristic equations. In matrix form this can be

written as

ntl _ .n _ A, n n A n n, n
(2.6a) Wil =Wy - g (wj+l wj_l) + 3 |A|(wj+l-2wj+wj_l) ,
where the diagonal matrix |A| is defined by |A].. = |a,|$ .

ij i' ij
In the original variables the scheme (2.6a) takes the form

ntl _ . n _ A n _.n A n _,n_,.n
(2.6b) Vj = Vj 5 A(vj+l Vj—l) + 5 |A|(vj+1 z'ji-'j—l) '
where |A| = TIAIT_l. Clearly, the stability condition for

(2.6a) and (2.6b) is
At
(2.6¢) K;-mix Iakl <1.

In general we define the matrix X (A) by

_ -1 -
(2.7) x(a) = oX(MT =, (X)) = X(a) 8,5 .

We remark that under our assumption of a full set of eigenvectors
we can compute X (A) by X(A) = P(A), where P(x) is the
Lagrangian interpolation polynomial such that
P(aj) = )«aj) y 3 = 1,0..,m.
In the following we shall describe various techniques
to extend the upstream-differencing scheme (2.6b) to nonlinear

systems of conservation laws (1.1).
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The linear system (2.4) can be regarded as a system
of conservation laws (1.la), where the flux depends linearly

on u:

(2.8a) f(u) = Au

The upwind difference scheme (2.6b) is in conservation
form (1.7), with numerical flux given by

(2.8b) f(u,v) = ATu + ATV

where A+ and A~ are the positive and negative parts of A,
defined by the functional calculus (2.7) as

(2.8¢) At = x+(A) ; AT = x (A)

where, using (2.2b), we set

(2.8d) x"(a) = a* , x“(a) = a” .

Note that since x+(a) + x (a) = a, and X (a)-x"(a) = lal,
we can write

(2.9) A+=% (a+ |A]) , A—=-]2; (A-1]a]) .

Definition. A difference scheme in conservation form
(1.7) is said to be an upstream scheme if:

(i) For u and v nearby states, (2.8b) is a linear
approximation to the numerical flux £(u,v).

(ii) When all propagations speeds are > 0,

f(u,v) = £(u) ;
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When all propagation speeds are < 0
f(u,v) = f(V) .

We restate (i) in analytic terms: Suppose u and v are

near some reference state u, ; then we require that

(2.10a) f£(u,v) = £luy) + A" (u,) (u-u,) + A (u,) (v-u,)

+ o(lu-u,| + |v-u,|) .
utv

A natural choice for u, is 5— i setting this into

(2.10a), and making use of (2.9) to set

at - a” = |a]
and that
£(8v) = LMW o o (fu-v])
we get
(2.10b) £(u,v) = HWEWD 2 a (WY | von) + o(fu-v]) .

We can write any numerical flux in the form

(2.11a) f(u,v) = f(u); flv) _ % d(u,v) ;

for the sake of consistency (l.7c) we need

(2.11b) d(u,u) =0 .

The upstream condition (2.10b) can be expressed then as

(2.11c) d(u,v) = [a(5T | (v-uw) + o(Ju=-v]) .
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Formula (2.6a) shows that linear upstream difference
schemes contain a large dose of artificial viscosity,
except for those components where ay is small, in particular
where a = 0. The same appears to be true for all upstream
difference schemes for nonlinear conservation laws: when
all characteristic speeds are # 0, each acts like a scheme
with a hefty amount of artificial viscosity, smearing
discontinuities. There 1is however quite a distinction
among the schemes when one of the characteristic speeds
is zero; this shows up in the way each scheme resolves a
stationary shock, centered rarefaction wave, and stationary
contact discontinuity. We turn now to examining these
matters.

The most critical difference in performance occurs in
resolving a stationary shock, see (1l.6d):

{ u, x<20
(2.12a) uo(x) = ' f(u) = £(v) , F(v) < F(u) .
v, x>0
The lack of numerical dissipation allows the design of
schemes that perfectly resolve stationary shock, i.e., (2.12a)
is a steady solution of the numerical scheme. The condition

for that is

(2.12b) d(u,v) =0 if f(u) = f(v) , and F(v) < F(u) .

On the other hand
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u, x <20
(2.12¢c) uo(x) = ’ F(v) > F(u)
v, x>0

is not an admissible discontinuity and should not be a steady
solution of the finite difference scheme, i.e., we require

that

(2.124d) d(u,v) # 0 if f£f(u) = £(v) , F(v) > F(u) .

We remark that the danger that a given upstream scheme
selects a nonphysical solution will occur only for
stationary or near-stationary discontinuities; otherwise
there is enough numerical viscosity in (2.3) to enforce the
selection of a physically relevant solution. Hence there
are two options in designing an upstream differencing scheme
for solving problems with discontinuous solution:

(1) To switch direction of differencing in a way that
will effectively introduce nonlinear dissipation at the expense
of slightly smearing the shock;

(2) To satisfy (2.12) and thus get perfect
resolution of stationary shock, but to add a mechanism
for checking the admissibility of the discontinuity.

We turn now to describe various forms of d(u,v) in
(2.11a). The most straightforward way to generate such

functions is by

(2.13a) d(u,v) = |a](u,v) (v-u) ,
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where |A|(u,v) is a matrix function of u and v which has

nonnegative eigenvalues, and such that
(2.13b) Al (u,u) = |Aa(w) ] ;

|A(u)] is defined by (2.7).

The simplest forms of (2.13) are

(2.14a) |A| (u,v) = lA(u;VH ;
or
(2.14b) 1Al (u,v) = & [|a@) ] + |at) |1 .

2

The latter was used by Van Leer in[l14], and introduces some
nonlinear numerical dissipation that somewhat smears
stationary shocks but on the other hand excludes nonphysical
discontinuities.

Another form of (2.11lc), which has similar properties,

has been suggested by Huang, [10]:

(2.15) d(u,v) = sgn(A(u;V)) [£(v) - £(u)] ;

here sgn(x) 1is the sign of x, and sgn(A) is defined by (2.7).
Yet another type of scheme has been designed by Roe [19].
His scheme is of the form (2.13a), where the matrix function

A(u,v) is required to have these properties:
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(i)
(2.16a) f(v) - f(u) = A(u,v) (v=-1u)

(ii) A(u,v) has real eigenvalues and a complete set
of eigenvectors.

(iii)
(2.16b) A(u,u) = A(u) .
For the Euler equations of compressible flow Roe [19] has
constructed a linearization of form (2.16a) having these

properties. We show now that such a linearization exists

gquite generally:

Theorem 2.1 (Harten-Lax). Suppose (l.la) has an entropy

function; then (l.la) has a Roe-type linearization.

Proof: We shall construct an A satisfying (2.16a)
which is of form A = BP, B symmetric, P positive definite.

Clearly, such an A is similar to the symmetric matrix

Pl/ZSPl/2 and so has property (ii). 1In our construction

we use the entropy function U(u) ; since U is convex, the
mapping u > w = Uu is one-to-one; we introduce w as
new variable in place of u. Let uy and u, be two arbitrary

states, w; = w(ul) , W, = w(uz) ’ fl = f(ul) r £y = f(uz).

2
Then

1

= 4 -8 -

(2.17) f2 - fl = f 30 f(ew2 + (1 U)wl) dé
0

= B(w2 -w

1
= j fw dG(wz-wl) l).
0
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We claim that fw is a symmetric matrix; this implies that
S is symmetric. To see about fw ; We use relation (1.5a);
differentiating with respect to u we get

Uuufu + quuu = Fuu .
The second term on the left is a linear combination of
symmetric matrices f;u ; the right side, Fuu , also is

symmetric. Therefore so is the first term

U £
uu u

It follows then that also

-1
(2.18) quuu
is symmetric.
Differentiating
w =0
u
with respect to u shows that W, = Uuu ; therefore
-1
U = u
uu W

Setting this into (2.18) shows that

is symmetric, as asserted.

Next we express
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1
_ d
Wy T W T f go vW(fuy + (1-8)u,) db
0
(2.19)
1
= j W, de(u2 -uy) = Plu, - up) .
0
Using W, = Uuu and the convexity of U we conclude that P

as defined by (2.19) is positive definite.

Combining (2.17) and (2.19) gives
f2-f1 = BP(uz—ul) = A(uz—ul) .

Thus the A we have constructed can be factored as BP,
as asserted. Condition (2.16b) is clearly satisfied.

Note that S depends symmetrically on Wy and w and

2 14
P symmetrically on uy and u, . This shows that A is a

1 and u2.

A similar result holds for systems of conservation laws

symmetric function of u

in any number of space variables as long as there is an
entropy, see Harten [ 8].
Having constructed A, we can define its absolute value

by (2.7); then we set
(2.20) d(u,v) = |A(u,v) | (v-u) .

When u and v correspond to a stationary discontinuity
(2.12), then it follows from £(v) -f(u) = 0 and (2.16a)
that v=u is a null vector of A(u,v), and consequently

in the null space of |A(u,v)|; thus d(u,v) = 0, whether
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or not the entropy condition F(v) - F(u) < 0 is satisfied.
Therefore the corresponding upstream differencing may
admit nonphysical solutions. In an Appendix to [9 ],

Harten and Hyman describe a viscosity-like term that can
be added to (2.15) and (2.16) to reject inadmissible
discontinuities without affecting the perfect resolution

of the physical ones.

Yet another way to construct 4 in (2.1lc) is

v
(2.21) d(u,v) = f [A(w) ]| dw ,
u

where the integration in (2.17) is carried out on a path in
state-space connecting u and v. Osher in [l16] suggests a
path of integration T that is piecewise parallel to the

right eigenvectors R, of A

k
m
(2.22a) r = uU Pk ,
k=1
k
du k
—d'-Q/— Rk(U)r I0<'Q'<Q‘kl
(2.22b) Tk :
+
g = R,
k=1,. (M.
(2.22¢) u™0) = u , ul(SZ,l) = v .

Existence of a unique solution to (2.22b)-(2.22c) is

guaranteed if lu-vl is sufficiently small [16]. A consequence
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of this choice of path is that d in (2.17) decouples

into characteristic contributions

*x

f la, (w (£))] Ry (u(&)) AL .
1o

(2.23) d(u,v) =
k

N e~g

Osher shows that limit solutions of (2.11) with

(2.23) satisfy the entropy condition and that a stationary

contact discontinuity is perfectly resolved; stationary

shocks are smeared over two intermediate states.
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3. Godunov-type Schemes

Godunov, in his construction of the "best" monotone
scheme [4], has used the exact solutions of local Riemann
problems to obtain an upstream difference scheme.

The solution of the Riemann problem

uL y X <0
(3.1) u, + f(u)x =0, u(x,0) = ’

depends only on the states up and up and the ratio x/t ;

it will be denoted by u(x/t; up s uR). Since signals

propagate with finite velocity,

(3.2a) u(x/t; uL,uR) =u for x/t < a

L L'

(3.2b) ul{x/t; Jul) = u for x/t > a

Y, Ur R R’

ap and ap are the smallest and largest signal velocity.
Godunov derives his scheme by considering the

numerical approximation v(x,tn) of the discrete time

levels tn » n=20,1,..., to be a piecewise constant

function in x, i.e.,

n . .1 .. 1

. = v, . = - =) A = .
(3.3a) V(X,tn) vJ for x 1in Ij ((3 2) ’ (J*'Z)A)

To calculate the numerical approximation at the next

time level tn+l = tn + T we first solve exactly the

initial value problem
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(3.3b) u, + f(u)X =0, u(x,tn) = v(x,tn) ’ —©< x <o

|

\

|

for t <t <t +T; and denote its solution by u (x,t).
Each discontinuity in v(x,tn) constitutes locally a
\

Riemann problem. If we keep Ala___|<1/2 where |a___| is
max - '“max

the largest signal speed, then because of (3.2) there
is no interaction between neighboring Riemann problems
and un(x,t) can be expressed exactly in terms of the

solutions of local Riemann problems: ,

1
7) A n _n )

— 7 Ve,V
t tn 37 3+1

r x=(j+

(3.3¢) un(x,t) = ul for

JA < x < (341)8, t_ < t < t

Godunov obtains a piecewise constant approximation

vix,t by averaging un(x,t i.e., he sets

n+l) n+1)'

(3.3d) v?+l
I.
j

|

=1[u(x t_+T) dx .
Y n'“’ n |

i

|

We can rewrite (3.3d) in terms of the solutions to

the local Riemann problem as

A/2 0 !

(3.4a) V?+l = % [ ulx/t; v?_l,v?) dx + % Alzu(x/’f;v?,vl__r;*_l)dx. !
0 -

Since un is an exact solution of the conservation laws

+1

(3.1) we can evaluate the integral defining v? in (3.3d) by
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applying (1l.2b) over Ij X (tn’tn+l)7 we get
n+l n ~ ~
= - A -
(3.4b) Vi = vy T ARG 0) S Bl 0T
where
- n _n

This shows that (3.4b) is in conservation form, with

(3.44) f(v,w) = £f(u(0;v,w))

The exact solution un(x,t) of the Riemann problem

satisfies the entropy condition (1l.6c):

n > i’
J U(un(x’tn+l)) dx < AU(Vj) - TF(Vj+l/2) + TF(Vj—l/Z) .

I.
J

Since U is a convex function, Jensen's inequality holds:

1 ] 1
U N u(x,t) de <K U(u(x,t)) dt .

I. I.
J J

Combining the last two inequalities we deduce that Godunov's
scheme satisfies the entropy ineguality (1l.8c).
The description (3.3c) makes sense only if the local

Riemann problems don't interact, i.e. if

A a 1/2

max I

On the other hand, (3.4b) remains consistent with (3.3d4) as

. . — A
long as the waves issuing from j + % do not react j + 5

during the time interval tn <t <t This will be the case

n+l °
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as long as

Aa <1.

maxl -

It follows from the RH relation (1.3) that
f(u(s;v,w)) - su(s;v,w) is a continuous function; however
it is only piecewise differentiable. It follows that the
Godunov flux function £f(v,w) defined by (3.44) is only
piecewise differentiable.

Note that Godunov's scheme satisfies criterion (ii)
for upstream schemes. To verify that it also satisfies
criterion (i) we shall show that Godunov's scheme, when
applied to linear equations, reduces to (2.6b).

Consider
(3.5a) u, +Au_=0,

A a constant matrix. Here the solution of the Riemann
problem is composed of constant states separated by a

fan of m characteristic lines (see Fig. 1).

Figure 1.
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(3.5b) u(x/t;uL,uR) =u, for a, < x/t< CHR k=20,...,m,

where we have defined

The intermediate states up can be calculated from the represen-

tation of up - up in terms of the right eigenvectors R, of A

k
in the following way.

m
i=1
k
(3.54) U = oup 4+ .Z JiR. .
i=1

We can write this by (2.7) as

(2.5e) we = up + Gk(A)(uR-u )

L

where Oy is the function

l1 for a < a
(3.5f) Uk(a) =

0 for a > ak

Let N be an integer such that

a,., < 0 < g

N N+1

Then by (3.5e)

(3.6a) u(O;uL,uR) = uy = u_ + UN(A)(uR—u

L )

L

(T-og@))up + op@ug .
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Since by (2.8a), in the linear case f(u) = Au,

setting (3.6a) into (3.4d) gives

f(u,v) = A(I- UN(A))u + AGN(A)V

From the functional calculus (2.7) and (2.8c) we deduce

that
A(1-0_(a)) = a't A o (A) = A
N ' N )
so that
+ -
f(u,v) =Au+2av,
in full agreement with (2.8b). Thus in the linear case

Godunov's scheme reduces to the upstream scheme (2.6b).

The solution to the Riemann problem (3.1) has a
rather complicated structure: as in the constant coefficient
case (3.5) the solution to (3.1) depends on x/t and

consists of constant states Uy s k=0,...,m; u0 = uL ’

u. = up separated by a fan of waves. Unlike in the

constant coefficient case, the k-wave separating

1 and uy is not necessarily a single line having a

h

characteristic speed a If the k™ characteristic field

k.

is genuinely nonlinear then the k-wave is either a

rarefaction wave (ak(uk_l) < ak(uk)) or a shock propagating
. th

with speed S, (ak(uk_l) > 8 > ak(uk)). If the k

characteristic field is linearly degenerate then the k-wave

is a contact discontinuity propagating with speed

ak(uk_l) = ak(uk) (see [12]).



28

It is evident from (3.3d) that, due to averaging
the Godunov scheme does not make use of all the informa-
tion contained in the exact solution of the Riemann problem.
We therefore consider replacing the exact solution to the
Riemann problem u(x/t; uL,uR) in (3.4a) by an approximation
w(x/t;uL,uR); the latter can have a much simpler structure
as long as it does not violate the essential properties
of conservation and entropy inequality. The following
theorem due to Harten and Lax [7] (Theorem 2.1) shows

that this type of approximation is consistent:

Theorem 3.1 (Harten-Lax). Let w(x/t;uL,uR) be an
approximation to the solution of the Riemann problem that
satisfies the following conditions:

(1) Consistency with the integral form of the

conservation law in the sense that

A/2
A
(3.7a) J w(x/t,uL,uR) dx = 3 (uL+uR) - TfR + TfL
~A/2
for A/2 > T max ]ak], where
fp = flug ) £, = £ (u;)

(ii) Consistency with the integral form of the

entropy condition in the sense that
A/2

A
(3.7b) J U(w(x/t,uL,uR)) dx = 5 (UL+UR) - TFp + TFp
-A/2

for A/2 > T max Iakl, where

Fp = F(uR) , FL = f(uL) .
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Using the approximation w to the Riemann problem

we can define a Godunov type scheme as follows:

A/2
n+tl _ 1 ..n n
(3.8) vj =3 £ w(x/t,vj_l,vj) ax
0
+ % J w(x/t;v?,v?+l) dx .

-A/2

Assertion. If conditions (3.7a) and (3.7b) are
satisfied, the scheme (3.8) 1is in conservation form
consistent with (3.1), and satisfies the entropy
inequality (1.8a).

For proof, see after Theorem 2.1 in [7]. It is
shown there that the Godunov type averaging can be
replaced by Glimm type sampling.

Theorem 3.1 shows that Godunov type schemes which
satisfy conditions (i) and (ii) above satisfy the hypotheses
of Theorem 1.1; this shows that if such a scheme converges,
the 1limit satisfies the conservation law and the entropy
condition in the weak sense.

We note that Godunov's scheme is of Godunov type,
par excellence.

We have shown at the beginning of this section that
Godunov's scheme (3.3) can also be written as a scheme (3.4)
in conservation form. The appropriate numerical flux was
obtained from the integral conservation laws (1.2b).

We show now that all schemes of Godunov type can be expressed
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in conservation form; we can obtain the appropriate
numerical flux by applying the integral conservation law
(1.2b) to the approximate solution of the Riemann problem

over the rectangle (- % ,0) X (0,T):

0
A
(3.9a) f w(x/T,uL,uR) dx - 3 U + T[fLR - fL] =0 ,
-A/2
where
fLR = f(uL,uR) .
This gives
0
(3.9b) f._ = £ - 11 wix/Tiu ,u.) dx + = u
* LR L "L'UR 271 L °
-A/2

If we apply the integral conservation law (1.2b) over the

rectangle (0,A/2) % (0,T), we obtain

£F_oo+ T

(3.9¢) fiR = £ w(x/T;u,.,u,) dx u

A/2
- B
LR 2T "R
0
The equality of (3.9b) and (3.9c) is just the content
of the consistency relation (3.7a).

Using formula (3.9b) for f in (1.7b) and (3.9c)

j+1/2

for fj-1/2 in (1.7b) and setting the resulting expressions

into (l1.7a) gives (3.8), i.e. puts the Godunov type scheme

in conservation form (l.7a):
n+1l n

T
(3.10) vj = vj - x [f(vj,vj+l) - f(vj_l,vj)] .
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If all signal speeds are positive, then

w(s;uL,uR) = up for s < 0 ; according to (3.9b), in this
case fLR = fL . Similarly, if all signal speeds are
negative, then W(s;uL,uR) = up for s > 0 ; it follows
from (3.9c) that in this case fLR = fR . This is

property (ii) of upstream schemes, thus shown to be
satisfied by all Godunov type schemes.

In a scheme of Godunov type we can incorporate into
the numerical flux all physical insight that we can put
into the approximate solution of the Riemann problem.

Also, as Harten and Lax pointed out in [7 1, a Godunov
type scheme (3.8) can be used just as easily on a grid
that varies in time, by adjusting the intervals of
integration on the right in (3.8). This makes these
schemes the natural choice for adaptive grids; further
development of such algorithms and numerical experiments
are described in Harten and Hyman [9 ].

We turn now to describing two different approximate
Riemann solvers, and the Godunov type schemes correspondiny
to them. The first, due to Roe, is based on a linearization
motion of type (2.16). Roe approximates solutions of the
Riemann problem for (3.1) by exact solutions of the Riemann
problem for the following linear hyperbolic equation with

constant coefficients:

(3.11a) wt + ALwa = 0, W(x,0) =
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Here ALR is a matrix that satisfies (2.16a) (2.16b) and has

properties i) - iii) listed there. Combining (2.16a) with
(3.5c) yields

(3.11b) fp-fp = Applug-up) = ) a;J.R.,

where a, are the eigenvalues of A Ri the corresponding

LR’
right eigenvectors, and Ji the coefficients in the resolution

(3.5c):
(3.11c) UpgUp = 1 J.R

The approximate Riemann solver is given by (3.5b), with u

defined by (3.5d).

k

The numerical flux associated with an approximate Riemann

solver is given by (3.9b); setting (3.5d) into (3.9b) we get

= + -
(3.12a) £ = fp ) a; J; R

where

a = Min (a,0) = %(a-]|al).

Setting this into (3.12) and using (3.1lb) gives

(3.12b) £ (£ +EL) - 5 ) la; 19, Ry

LR i

(£ +ER) = 3IA o] (up-up) s

in the last step we have used the definition of |A| as given
by (2.7). Indeed, (3.12b) is Roe's scheme defined in (2.1lla),

(2.20).
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As already pointed out in Section 2, Roe's scheme
admits non-physical, i.e. entropy violating, stationary
discontinuities. 1In an appendix to [9 ], Harten and
Hyman show how to modify Rce's scheme to eliminate such
entropy violating discontinuities while retaining those
that satisfy the entropy law.

We note that the numerical flux (3.12b) of Roe's
scheme resembles Osher's scheme (2.19). There the jumps
Jk in the characteristic state variables are represented
by the path length sz Osher's scheme, however, is not
of Godunov type in the sense of (3.9) since the integra-
tion path I' in state-space does not correspond to a
univalued approximate Riemann solution w(x/t,u_,u.) as in

LR

(3.8)

Roe's Riemann solver contains a great amount of
detail: m-1 intermediate states. We describe next a
hierarchy of Riemann solvers where much of this detail is
lumped together. The simples of these schemes contains
only one intermediate state.

i) Denote by ap and ap lower and upper bounds, respec-
tively, for the smallest and largest signal velocity, calcu-

lated according to some algorithm. Define the approximate

Riemann solver by

(Y, for x/t<aL
(3.13) u(x/t;uL,uR) = urp for aL<x/t<aR
u for a_<x/t

R R
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where the state u is determined from the conservation

LR
law (3.7a):
(TaL+Al2)uL + T(aR—aL)uLR + (AlZ—TaR)uR
= L +u) -TlE-£ ]
T 2YVL R R L°
This gives
(3.14) _ aRuR—a uL _ f -f
- U1R a_.—a a_-a

We turn now to the determination of the associated numerical

flux. We set (3.14) into (3.13), and then into (3.9b):

fL when 0 < ap
-a a a.a
L R L R
(3.15a) f._, = {1 —= f_ 4+ —— f_ + —— (u_-u_ ) when a_ < 0< u
LR aR aL R aR aL L aR aL R L L
<
L fR when aR 0

This can be combined into a single formula

a,—a

e+

-a

o+

a

2o |
ot

(3.15b) £

+ -
LR a_—a R a.—a fL

1 aRIaL|—aL]aR|
2

a_—a

(u,-u_)
R 21, R L

¢,
t
o)
t

Since u, . was chosen to satisfy the conservation law (3.7a),

we conclude that w - is the mean value of the exact solution

over the interval (ta_,ta.). It follows therefore from Jensen's

L R

inequality that (3.15) satisfies the entropy ineguality (3.7b).

Suppose that uL and uR can be connected with a shock of

the first or the mth family. 1In tnese cases the exact solution

is

R
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u, for x/t<S

L

up for s<x/t ,

(3.16) u(x,t) =

where S is the speed of propagation of the shock. Suppose

the algorithm for calculating a; and ap is such that it

furnishes a, = S or ap = S, depending on whetner the shock

belongs to the first or the mth family. Then it follows

from the equality of ure with the mean value of the exact
solution that (3.11l) is the exact solution.
ii) We describe next a class of approximate Riemann

solvers, where up and.uR are linked through two intermediate

states. These states are so chosen that
a) The conservation laws are satisfied
b) If the exact solution of the Riemann problem links
u and up through a single shock (or contact discontinuity)
of any of the m families of waves, then so does the approxi-
mate Riemann solver.
c) The entropy law is satisfied
Such an approximate Riemann solver was constructed in
[ 71; the one presented here differs from it in some important

details. We are grateful to Paul Woodward for a suggestion

which has been incorporated in the scheme.

Let the velocities ar and ap be defined as in approxi-
mation i) described above. We define a velocity V as follows:
Let U be an entropy function defined by (1.5); denote its

gradient by w=U - and introduce the abbreviation

(3.17a) w(uR) - w(uL) = KLR
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We set

(3.17b) V=2 . (fR—fL)/ a  (u

LR LR “up)

R

where the dot denotes the Euclidean scalar product.

Next we show that V is well defined, and derive its
salient properties:

Lemma 3.2: i) The denominator in (3.17b) is positive
for up # up®

ii) V is uniformly bounded -

iii) If up and uy satisfy the RH condition (1.3):

(3.18) £ -f = S(uR— )

R L v,
then V = S.

Proof: i) Combining (3.17a) and (2.19),

(3.19) £ e (u,-~u.) = P(u_~u_)  ( ) ;

LR R YL R YL Ur™Yy,

since P is positive definite, the above guantity is positive

for u .
R 7 Y

ii) Use (2.17), (3.17a) and (2.19) to express the

numerator of (3.17b), and (3.19) for the denominator; we get

P(u_- . -
. (uR uL) BP(uR uL)

(uR—u -P(uR—u

D )

This is a ratio of two quadratic forms and therefore lies between
the smallest and largest eigenvalue of P%BP%. These are egual to

the eigenvalues ajof A=BP constructed for Theorem 2.1. In fact,

V can be represented as a weighted average of the eigenvalues

of A.
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iii) Setting (3.18) into (3.17b) gives

V =8
This completes the proof of Lemma 3.2.
We now outline two methods for constructing approximate

Riemann solvers w(x/t;u_,u_ ) with two intermediate states

LR
* *
uL and up separated by the line dx/dt =V ; i.e., w is of the
form
> < -
up x/t a
*
up ar, < x/t <V
- = 4
(3.20) w((x/t; uL,uR) R
up V < x/t < ap
<
LuR ag x/t

(See Figure 2).

Figure 2.

The flux across a line x=st for eguation (1.1l) is

defined as

(3.21) f (u) = f(u)-su
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We introduce a numerical flux across the line x=Vt, denoted

as

sul) .

£y ug

\Y

We reguire consistency with the exact flux:

(3.22) fv(u,u) = fv(u) = f(u)-vg.

Having introduced flux (3.21) across lines we can write
approximate conservation laws for the triangular regions

bounded by t=71, x=Vt, and x=aLt or x=aRt respectively:

(3.23a) (v-a )u; + £ (up, uy) - £y (ug) = 0
and
*
(3.23b) (aR—V)uR + faR(uR) - fV(uL,uR) =0
u; and u; can be determined from (3.23). Clearly, since (3.23)

are conservation laws, the resulting scheme (3.20) satisfied the
consistency relation (3.7a). Thus reguirement a) is fulfilled.

We turn now to requirement b), the exact resolution of
single shocks and contact discontinuities. A shock or contact
discontinuity is characterized by the RH condition (3.18) and
the entropy condition (1.6d). Using the notation (3.21)

these can be written as follows:

(3.24) fS(u) fs(uR), FS(uL) > FS(uR)

where

(3.25) Fs(u) F(u)-sv
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We denote by fV a vector function which has the following
property:

If fv(uL) = fv(uR), then

(3.26) £, upup) = £ (u) = £ (up)

Below we shall specify two distinct ways for constructing such

A

an fv. We now set

(3.27) fv(uL,uR) = %v(uL,uR) - B(uL,uR)(uR—uL) ,

where B has the following property:
(3.28) B(uL,uR) = 0 when (3.24) holds.

We take (3.27) as our numerical flux. It follows from
(3.26) that it satisfies the consistency condition (3.22),

and from (3.26), (3.28) and Part c) of Lemma 3.2 that

single shocks and contact discontinuities are resolved exactly.

Here are our choices for %V and B: We define GR and 6L by

aR-V vV -a

(3.29a) 6R - ap-ap ! 6L B aR—ai

Note that

(3.29b) 0 < 8., 0 <68 8o+ 8, = 1.
Then we define

(3.30a) g (uyug) = Spfo(ur) + O f,(up)

and
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~

(3.30Db) fb(u

v ,uR) = £ _(u

v ) - £(S_u_+8_u_ ) + 6LfL + §_f_ ,

L LR L'L RR R™R

where ur e is defined by (3.14).

It can be verified immediately that fs satisfies (3.26).
. . b . _
To verify it for fV we note that if fV(uL)—fV(uR), then U p

= dRuR+6Lul ; setting this into the right side of (3.30b) we
see that it equals the right side of (3.30a).

We define B as follows:

(3.31a) g = ClBl+C252

where

+

(3.31b) Bl(uL,uR)=:[%V(uR)-FV(uL)- % (uL+uR)'(fV(uR)—fv(uL){H "uR—uﬂrz

+
where p denote Max(0,p), and

(3.31c) B, (

Fa,) = (ag—a

u )-l|
LR R L

2
| £y (ug) =y (up) [ ]

—ugl] T

2 Up

The analysis in Section 4 of [ 7] shows Bl is a bounded function.

By construction, Bl = 0 when the shock condition (3.24)
is satisfied; 82 = 0 when the RH condition (3.18) alone is satisfied.
Thus our choice of B satisfies (3.28), and so requirement b) is
fulfilled.

An analysis similar to that carried out in Section 4 of [ 7]
shows that the positive constant Cl and C2 in (3.3la) can be so
chosen that the entropy condition (3.7b) is satisfied. Thus is
requirement c) fulfilled.

To derive the numerical flux associated with the above Godunov

type scheme we set (3.20) in (3.9b), using (3.23) to express uz
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*

and up:
(3.32a) fLR = %{fL+fR+YL[fV(uL)—fV(uL,uR)]
+ YR[fV(uL,uR)—fV(uR)]—lvl (up=u;)}
where
|vI-la| lagl=1V]
(3.320) Y, = -__V__% Qg = fg?_v_v_
One can easily verify that when ar, > 0, fLR = fR . and that

when V = 0, fLR = fv(uL,uR).

If on the right side of (3.32a) we substitute (3.27) for

£ (uL,uR), the following term containing B appears:
v

(3.33a) -4 (YR‘YL) B (uR-uL)

From (3.32b)

( 0 if aL > 0 or aR <0
(3.32b) (Y ) 2 <0< V<
. =Y = a a
2MRL Ta T+[V L R
'aRl < <
SENEL ap < V= 0 <ag

a nonnegative quantity. This shows that B enters the difference
scheme as an artificial viscosity. Note that, unlike classical
artificial viscosity, our B is zero across a shock and is positive
across an incipient rarefaction wave.

Unlike the previous schemes described in this review, the
schemes (3.32) are nonlinear even when applied to linear equations.
Thus it is not upstream in the sense of our definition in Section
2. The decrease of entropy guarantees the L, stability of the

scheme.
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For systems with many components, (3.32) requires less
computational effort than either Godunov or Roe's scheme, yet
its accuracy may be comparable.

Schemes of type (3.32) are especially suitable for compu-
tation on a moving mesh: we move each meshpoint with velocity
V. Such mesh algorithms have been studied in [ 92].

We remark that any scheme in conservation form (1.7) with
a numerical flux f(u,v) that yields perfect resolution of dis-
continuities but also admits entropy violating ones may be

corrected by modifying its numerical flux to be

f(u,v) - ClB(V—u) .
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4, Flux-Splitting

In this section we discuss generalizations of the
upstream—-differencing scheme (2.6b) to nonlinear systems of

conservation laws that are based on the flux-splitting

(4.1a) f(w) = fH(w) + £ (w) .

We consider schemes in conservation form (l.7a) with the numerical flux

(4.1Db) £(u,v) = fH(u) + £7(v) ;

clearly (4.la) implies the consistency relation (1.7¢c). Let us define

(4.2a) £2(w) = £ (w) - £7(w),

and rewrite (4.1b)

(4.2b) £(u,v) = %.[f(u)+f(v)—(fa(v) - £2(w)].

Recalling the notation (2.11a) we write

(4.2¢) d(u,v) = f3(v) - f2(u) .

It is easy to‘see that (4.1)~-(4.2) reduces to (2.6b) in the constant-

coefficient case if and only if £f2(w) becomes |A|w.
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and Warming [21] introduced the notion of flux splitting

ions of gas dynamics. They took advantage of the fact in

f 1is a homogeneous function of w of degree one. Then

Euler’s identity holds:

(4.3a)

f(w) = A(w)w , A=f

Steger and Warming define

(4.3b)

fH(w) = AT (w)w £7(w) = A"(w)w

where AT and A~ are defined by (2.7), (2.9). Clearly (4.1a) 1is

satisfied; (4.2a) becomes

(4.3¢)

£2(w) = [AGW) |w ,

where |A(w)| is defined by (2.7).

Setting

(4.3c) into (4.2¢c) gives, after rearrangement

(4.3¢”) d(u,v) =%(|A(u)| + |A(W) ) (v=u) +%(|A(v)|- |ACu)|) (utv).

The RHS is of the upstream form (2.11c¢c’), except for those nearby

values of u and v for which sgn a, (u) # sgn a,(v) for some k. The

consequence

of this nonsmoothness is a kink in computed solutions near

such transitions, e.g. near sonic points. This can be rectified to
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approximation to

We describe

function of u,
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one replaces |A| by x(A), where x(s) is a smooth

|s|, see Steger [22], Van Leer {15], or Harten [5].

now a way of splitting when f(u) is not a homogeneous

by introducing a reference state ug and applying the

mean value linearization (2.16a) to u and ug:

(4.4a) f(u)

- f(uo) = A(UO,U)(U - uo)

and consider u-uy to be a new state variable, and f(u)—f(uo) to be a

new flux function; denote them again by u and f(u), respectively. Thus

any solution of the conservation law (1.1) satisfies

(4.4b)

The new flux

(4.5a)

can be split as

u, + [A(uo,u)u]x =0

f(u) = A(uo,u)u

£(w) = AT(ug,wu + ATy wu = ) + £7(w),

exactly as in the homogeneous case (4.3a).

We turn now to a class of upstream schemes which are a natural

generalization

of Steger and Warming’s flux splitting. These schemes
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are obtained by approximating each conservation law in (l.la) by a

collisionless Boltzmann equation.

Let ¢(x,t,q) be a vector function whose ith component denotes the
density of a particle of jth kind at position x and time t, travelling
with velocity q. We assume that the particles stream freely, i.e. that

¢ satisfies the collisionless Boltzmann equation:

(4.6a) ¢p +q d,=0.

Note that the densities of the different kinds of particles are

completely decoupled.

Using equation (4.6a) we can determine the value of ¢ for t > 0 in

terms of ¢0(x,q) = ¢(x,0,q):

(4.6b) ¢(x,t,q9) = pp(x-qt,q).

We denote by z and g the total density and flux associated with

the density ¢:

(4.7a) z(x,t)

f ¢(x,t,q) dq

(4.7b) g(x,t) [ q ¢(x,t,q) dq

These satisfy the conservation law obtained by integrating (4.6a) with

respect to q:
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(4.8) z, +gX = 0
The initial values of z and g can be obtained by setting t = 0 in
(4.7):

(4.9) zo(x) = [ ¢og(x,9) da , gox) = [ q ¢5(x,9) dq

If the initial values of z and g are equal to those of u and f(u):

(4.10) zg(x) = up(x) , go(x) = f(upg(x)),

then for t small enough the solution z of (4.8) would be a reasonable
approximation to the solution u of (l.la). We show now how to choose
¢g so that (4.10) holds: we introduce a vector distribution u(q,u),

depending on a vector parameter u, satisfying

(A‘lla) f U(q’u) dg = u ,

(4.11b) f q u(q,u) dq = f(u) .
Then we simply set
(4.12a) $o(x,q) = ulq,up(x)).

Setting (4.12a) into (4.9) and using (4.11) shows that (4.10) is

satisfied.



43

Equation (4.8) can be solved explicitly; as in the Godunov type
schemes, averages of these explicit solutions will be wused to

approximate solutions of (l.la).

Let v(x) be an approximation at t, to the solution u of (l.la).

We define the initial value $g by (4.12a):

(4-12b) ¢0(X,‘I) = U(q’ V(X)) .

Using this in formula (4.6b) for the exact solution of equation (4.6a)

gives

(4.12¢) ¢ (x,t,q) = u(q, v(x—qt)) .

Setting this into (4.7a) results in
(4.13) z(x,t) = [ u(q,v(x—-qt)) dq.

We assume that v = v? 1is piecewise constant. We define an

+1

approximation v@ touat t ., = tn+T that is plecewise constant on

each interwval Ij = (Xj—1/2’ Xj+1/2) by defining the value v?+1 of v

on I. to be the average of z(x,T) over I Using (4.13) we get

j j°

(4.14) oI = 107 [] u(q,vP(x-qr) dq dx
I.
]

We show next how to express (4.14) as a scheme in conservation form.

We integrate (4.6a) over the rectangle IjX(O,T); we get
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T T
[ ¢ ax| + [ q ¢ dt|

X .
j+1/2
=0

We integrate this with respect to q, obtaining the conservation form

4e152) 141 G- v + 18y ypm £y = 0,

where v0tl, v%

3 are the values of vl D on I,

30 and f%t1/2 is defined

by

T
0

Using (4.12c) to express ¢ on the RHS we get

T
(4.150) 1 £%,/9 = [ [ q ula, vP(xyyy/p-qt)) dt dg.
0

This 1s the numerical flux associated with the scheme (4.14).

We show now that this numerical flux is consistent with the flux f
in (l.la). TLet’s take the case, sure to be satisfied in any scheme of
practical significance, that p has bounded gq-support. Then it follows
from (4.15b), and the fact that v? is piecewise constant, that there {is

an integer N, whose value depends on T, such that

n - n n
Fir/2 = OV pers e Vig)
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Suppose Vg+k =v, k= -N1,...,N; then vn(xj+1/2—qt) on the RHS of
(4.15¢) equals v on the q-support of u; using (4.11b) we see that the

RHS of (4.15b) equals Tf(v). This proves consistency.

We turn now to the task of determining the distribution wu.
Clearly, since only the first two moments of p are specified by
conditions (4.11), there is a great deal of leeway. For guidance we

turn to the linear case,

f(u) = Au, A constant

The solution of the linear equation

(4.16a) + Au, =0,

Ye

with initial value u(x,0) = uo(x) has the form

(4.16D) u(x,t)

z Pin(X - ait).

Here aj are the eigenvalues of A, and Py is projection onto the line

spanned by the right eigenvector Ri. On the other hand, setting (4.6b)

into (4.7a) gives the following expression for z:

(4.17) 2(x,t) = [ ¢4(x=qt,q) dq

Clearly, comparing (4.16b) and (4.17) we see that

(4.18a) z(x,t) = ulx,t)
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if

(4.18b) ¢0(x,q) =) P, ug(x) 8(q - ag).

It 1is not hard to show that (4.18a) holds for no other choice of 1)
whose support is bounded in x and q. Setting (4.18b) for ¢0 into

(4.12a) we conclude that y must be of the form

(4.19) u(a,u) =] 8(q-a;)Pyu

We turn now to the nonlinear case. As we have shown earlier in

this section, the flux can be put in form (4.5a):

f(u) = A(Wu,

where the matrix A(u) has real eigenvalues ai(u), and a complete set of

eigenvectors. According to the spectral theory of matrices

(4.20) z Pi =1 > 2 aiPi = A

It follows from this that the distribution ﬁ defined by (4.19)

satisfies relations (4.11) even when ay and P, are functions of u.

Since relations (4.11) are linear, the most general u that

satisfies (4.11) is of the form

(4.21) u(q,u) = nlq,u) + nlq,u),
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where n is any distribution whose first two q—moments are zero for

values of u.

We call schemes of form (4.14) Boltzmann—-like; we 1list some

their properties.

(a) Suppose the support of the distribution p is contained in

< Q. Suppose for simplicity that the mesh over which we discretize

all

of

lql

is

uniform, i.e. that each interval Ij has the same length A. Then it

follows easily that (4.14) is a three point scheme if t 1s chosen
that
(4.22) Q< A.

So

For Boltzmann-type schemes the flux (4.15b) splits naturally into

two parts. We define

u(q,u) for q2> 0
nilq,u) =
0 for q <0
(4.23)
0 for q > O
n_(q,u) =

u(q,u) for q <0
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Clearly u = Uy + u_ s setting this into (4.15b) we obtain a splitting
= ¢t =
Firr72 = B54172 * E01/2

Clearly, if (4.22) holds, f;#l/Z depends only on Vitls and f}+1/2 only

on V..
J

(b) Suppose F is of the form (4.5a) and u is chosen to be of form

(4.19). The support of pn extends from apin to ag, .y, S0 Q= |a |, and

max

the restriction (4.22) is the CFL condition. The decomposition of ﬁ is

Uy < 2 §(q - ai) Piu
aizp
H_. = z G(q - ai) Piu

ai<0

Setting this into (4.15b) gives

+ _ .t
Fir172 = A7 (5407541

Ti1 = AT(vv,
Fyrr/a = 4 0p)vy

where AT and A~ are the positive and negative parts of the matrix A

defined by (2.7) and (2.9). This is the Steger-Warming scheme (4.3).

(¢) Consider the equations of compressible flow in Euler
coordinates. In this case the three components of ¢ describe the
transport of mass, momentum and energy. Since ‘momentum is

mass x velocity, and q is velocity, it is reasomable to stipulate that
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the second component of ¢ be q times its first component. In view of
(4.12a), this would be the case iff the same relation holds for the

components of u:

L@ g,

We claim that this is true for § as given by (4.19). For
Piu = wiRi
and so, by (4.19),

(4.23a) u= 2 §(q - ai)wiRi

(4.23b) au =} 8(q = apdagwR;

For the equations of compressible flow, the first component f(l)

of flux and the second conserved quantity u(z) both are equal to m.

This implies that the first row of A = f is (0,1,0). It follows then
from the eigenvalue equation

ARi = ai Ri

that the second compoanent of Ri is ay times its first component. This

shows that the second component of (4.23a) equals the £first component

of (4.23b), as asserted.
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(d) We analyze now the stability of Boltzmann type schemes for
linear equations with constant coefficients. In this case we take u to

depend linearly on u,

(4.24) u(q,u) = M(q)u,

M a matrix valued function. The consistency conditions (4.11) become

(4.25) [ M(q) dq =T , [ a M(q) dq = A.

The scheme (4.13) is

z(x,t) = f M(q) v(x = qt) dq

Taking the Fourler transform we get

Z(E,t) = M(LEIT(E)

A condition for stability is that M™M(£) should be power bounded,
uniformly for all £. Note that there is no stability restriction of
the time step t; the reason for this is that Boltzmann type schemes

automatically adjust their domains of dependence.

Note that we have analyzed here the stability of scheme (4.13).
The full scheme (4.14) is a combination of (4.13) and projection onto
the space of piecewise constant functions. The latter decreases every
welghted L2 norm. Therefore 1f (4.13) decreases some weighted L2 norm,

the combined scheme (4.14) is Ly stable.



56

For the case (4.19), we have

M(q) = Z G(q—ai)Pi,
and
~ iq .E
ME) =) e I Py
If A is symmetric, the Pj are orthogonal projections, and IMEN = 1;

so in this case the scheme is stable. For A nonsymmetric, stability

can be proved by replacing the euclidean norm by some matrix-weighted

norme.

(e) We have not carried out any stability analysis in the
nonlinear case, nor studied the interesting question of how to assure

the entropy condition.

(f) We conclude by observing that flux splitting schemes cannot
resolve exactly stationary shocks. For suppose that the stationary RH

condition f(u) = f(v) is satisfied. Tt does not follow from this that

also

(4.26) £f2(u) = £3(v).

But for a split flux scheme, (4.2b) shows that (4.26) is necessary for

the exact resolution of stationary discontinuities.
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